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ABSTRACT 

Let Xi, )(2 . . . .  be independent random variables, all with the same distribution 
symmetric about 0; 

S. = ~ Xi. 
i = 1  

It is shown that if for some fixed interval I, constant 1 < a ~ 2 and slowly 
varying function M one has 

n 1 -  l/~t 

k = l  

then the Xt belong to the domain of attraction of a symmetric stable law. 

1. Introduction. Let Yt, I:2,"" be a Markov chain and N.(A)= number of  

visits to A by Yk up till time n. A well known result of  Darling and Kac ([2], 
especially §6) states that  (under very mild conditions) N.(A) tends to infinity 

and has a nondegenerate limit distribution after proper normalization, only 
if(2)(3) 

ex{rkeA} 
(1.1) l im k=l = 1 

. - o o  n 

for some fixed 1 < g < oo and slowly varying function M for which 
nl-I/~[M(n)]-l~oo(n~oo). I f  (1.1) holds uniformly for x~A, then 

n-l+l/'M(n)N,(A) has a Mittag-Leflter distribution as limit distribution. I f  

Y~, k > 1, is a random walk, i.e. if  Y, = Sk = ~ =  t X~ for independent, iden- 
tically distributed random variables X/, and if A is a bounded interval, then (1.1) 
reduces to 

Received March 10, 1968. 
(1) Research supported by the National Science Foundation under grant GP 7128. 
(2) P~[E] denotes the conditional probability of the event E given )'1 = x. 
(a) The condition in Theorem 5 of [2] is stated in terms of the generating function 

kf f i l  

However, by means of Karamata's Tauberian theorem this condition is easily translated into (1.1). 
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X P{S,  A} 
(1.2) lira k=l = 1. 

,,--,oo n , - , l , { M ( n ) } - ,  

The uniformity of  the limit in (1.1) as x varies over a compact set is automatic 
for random walks by Corollary 1 in [-8] ; moreover by the estimates in ~48 of  [-7] 
(see also [-6]) 0~ can take only values in the closed interval [,1, 2] in the case of  
random walks. Professor Spitzer raised the question whether (1.2) implies that X~ 
belongs to the domain of  attraction of  a stable distribution. The purpose of  this 
note is to prove the theorem below, which answers the question affirmatively 
for 1 < ~ < 2 and symmetric Xi. 

THEOREM. Let XI ,X2 ,""  be independent random variables, all with the 
same distribution function F( ' ) ,  symmetric about the origin and let Sn 
= ~,~= 1Xv I f  for somefixed interval I(4), 1 < ot~ 2 and slowly varying function M 

111 - 11~ 
e{s  i} ,., M(n----T (n- ,  oo), 

k = l  
(1.3) 

then 

(1.4) l i m P  I CSn < x } = F ~ ( x )  
n-* 00 tn  ll~M(n) 

where F~ is the symmetric stable distribution function with characteristic function 
exp - I  t ]" and C is a constant depending only on I and the support of F. I f  F is 
not a lattice distribution then(s) 

C - ~(~ - 1) 

F ( 1 )  IlJ 

R~MARK. The converse implication, i.e. from (1.4) to (1.3) is a special case of  
Stone's local limit theorem (r9], Theorem 1). Thus (1.3) and (1.4) are actually 
equivalent. The local limit theorem does not require symmetry assumptions 
and allows ct = 1 as well. It seems likely that the present theorem will also hold in 
this greater generality. However, our proof  makes essential use of  the symmetry 
and of  ~t > 1 and therefore offers little hope for generalization. 

2. P r o o f  o f  the theorem. We shall restrict ourselves to the case where F is 
not a lattice distribution. For a lattice distribution the proof  is almost the same 
and actually simpler because Lemma l(c) is not needed. We may also exclude the 

(4) More generally, by Corollary 1 of [8], we could replace/by any bounded Borel set whose 
boundary has zero Lebesgue measure. 

(5) [ A [ denotes the Lebesgue measure of ,4. 
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case where a 2 =fx2dF(x)< oo for this ease is covered by the central imit 
theorem. Ct, C2, ... will denote constants (which may depend on F, ~, M and I 
though). 

First we show that F may be assumed quite smooth. 

L E n A  1. I f  F is not a lattice distribution and a 2 = oo and (1.3) holds then 
(a) For any fixed interval d 

(2.1) P{S, e J } ~  1 -  i i  I 
nll'm(n) 

(b) For all sufficiently large n 

(2.2) sup -hl p { s , ~ [ u , u + h ] } <  =~12 ( 1 _ 1 1  1 

~-~l,J , - ,  n " M ( n )  - -  O 0 < U <  + O 0  

(c) For every e > 0 and B > 0 there exists an N =N(8,B) such that for all n >=N 

e{s.~I} [ 
(2.3) sup P(S.--~'x-~I} 1 <= e. 

Ixl ~B4n 

Proof. Since F is a symmetric non-lattice distribution, the smallest closed 
subgroup containing the support of F is the whole group of reals. By Proposition 
2 and Corollary 1 of [8] 

(2.4) lira 
n ~ O O  

for each fixed k. In particular 

f: fo (2.5) dsP{Szt,12]~[- s, + s]} P,{S, e l }  h • ~ i i  I 2sds 

P{S,+k~J} Isl 
P{S.~I}  [ I [ 

On the other hand, if 

h 2 =~P{S.~I}. 

t "  

qJ(t) = J e"XdF(x) 

is the characteristic function of F, then (see [1], formula 10.3.3) 

foh 1 f~°°l-coshte_,,,C,(t)dt, (2.6) ds P( Sm¢ [u - s, u + s]} = -~ _ t2 

so that we conclude 
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(2.7) P{Sn~I} .~ ! I !  f _ ? l - c ° s  ht 

Since 0 __< ~2(t) =< 1 (F is symmetric) the right hand side of (2.7) is decreasing in n. 
Thus P{S, eI} is "approximately decreasing" and it is an easy consequence 
of this fact and (1.3) (see [3], proof of Hilfssatz 3 in Chapter 16.1 or [4], 
Theorem XIII.5.5) that 

(2.1) now follows from Corollary 1 in [8]. 
As for part (b) it suffices to show 

. n l / , m ( n )  

since each interval of length h =>llI can be written as the union of at most 2h/[I I 
intervals of length I II. , a t  by Theorem 1 of [8] there exists a 6 > 0 such that for 
all n > n  o and a l lu  

P s . ~  u -  II1, u + III <= ¥ P (S2t"/zl e ( u -  III , u + Itl)/+ :+" 

3 /, 21tl 
<- ~ )o dsP{SzEnl21~Eu-s,u+s]}+e -a" 

(2.8) = 4~]I] _ t 2 02r"/21(t)dt + 

3 (+~l-cosZlllt 
<= 4~[I1 d-oo t 2 d/2rn/21(t)dt + e-~" 

< 6(1 _ 1 )  1 (See (2.1) and (2.7)). 

nl/'M(n) 

This proves (b). 
To prove (c) we observe that one can decompose F as 

(2.9) F = a G1 + (1 - a)G2 

for some symmetric distribution functions Ol, G2 such that 

1 3 (2.10) ~-~ a-- 
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and such that the support of Gt(dx) is bounded. One can clearly find such functions 
by taking a Gl(dx)= ~(x)F(dx) for some 0 < ~t(x)_~ 1, ct symmetric and zero 
outside a compact interval and such that 

1 < ~(x) dF(x) < -~-. 
4 ~ ~-~ 

Gl(dx) is then obtained by normalizing e(x) F ( d x ) a n d  (1-a)G2(dx)= 
(1 - e(x)) F(dx). It is clear from this construction and the fact that ~2 _ oo 
that we can make 

a~ = :+oo°°x2 dGl( 

as large as desired. From (2.9) we have for n = 2m or n = 2m + 1(6) 

(2.11) F(") = k=O ~ ( 7 )  ak(1- a)"-kG~k) * G(2m-k) * F~"-")" 

We shall use the abbreviation Hk for the distribution function G~ m-~) .F ("-s) 
(suppressing the dependence on n, m). We shall use G(A) for the measure assigned 
to A by a distribution function G. Then 

(2.12) FO')(x+I)= k=o ~ ( k ) a t ( 1 - - a ) m - k f  Hk(dy)G(I~)(x-y+I)" 

Because of  (2.10), there exists a b > 0 such that 

~, (m ] ak(1 a m-k < e -bin, (2.13) - ) = m ~ _ m o .  
k ~_am/2 kr~/ 

Also, by Esseen's form of the central limit theorem ([5], Theorem 42.2) or by 
Stone's local limit theorem ([9], Theorem 1) 

(2.14) G~)(x- y + I) 4~k¢71~ .f e-(X-'+z)2/2ka12 dz] = o ( ~ )  

uniformly in x,y. Now take Co such that 

2 f o o  e -"2/2du < 8 
(2.15) 

x/~- ~ JCo/Z - 6"24" 

By viture of (2.14) we can then find ml = ml(B,e) such that for k >= (a/2)m, 
m > m,,  lxl lyl =< C : ,4m 

(6) F(,) is the r-fold convolution of F. 
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(2.16) 

1 

iG?)(x_y+O_G?)(_y+Oi < 8111 e-2Co,,,2m/2~,,2 

+ 1 f e_(X_.+z)2/2k~,2e_(_.+z)~/2,~.,~ld z 
42-ffL 

fl ( ,+~)2/2k,,2 _~ 8 [ 4 B 2 m  + 4 B ~ 2 - m "  - -  
e - -  d~L-i~- + I exp / 21:# C°°t ~ /m/ -  11 ] 

[° { 1 _-< 2G~k)( - y + I) --~ + I exp 4B2m ~ + 8BC°°~mI-j-11 . 

We already pointed out that o1 can be taken arbitrarily large; in particular we may 
assume that it is so large that the factor in square brackets in the last member 
of (2.16) does not exceed e]6 for k ~_ am/2. Note that the lower bound for o~ 
required here depends only on B, Co and a. Once o~ has been chosen in this way 
we have under the conditions for (2.16) 

(2.17) 

Hk(dy) Gl ( -- Y + I) - / I f  (k'x 
lyl ~-¢out4 ra lyl ~_co¢1,/,n 

= 3 
f Ht,(dy) Gtlk)(-- Y + I). 

Hk(dy) Gtlk)(- y + I) I 

To estimate the analogous integrals over l yl > Coo,.,/m we use the following 
inequality which is almost immediate from the definition of H~, n - m  _> m and 
(2.2) (see also [7], p. 90); 

sup Hk(x -- z + I )  < supF(m'(Eu, u + 1II3) 
XgZ U 

1 , 

ml#~M(m) 
m > m  2 

This inequality implies for all l ul--< + 1, m > m2, 

(2.18) 

f Hk(dy) G~'(u - Y + I) 
lyl ~_Co¢14m 

= f f  Hk(dy)G~)(dz)<= 
z + y  eu+l 

lyl Z_ Co,~t,/m 

f G~)(dz)H~(u - z + I) 
Izl ~(Co¢1- 2B),/m 

1 2 ( 1 _ 1 )  1 f G~(dx). 
m l/~M(m) iz I ~(coe,-2n),/m 



Vol. 6, 1968 A TAUBERIAN THEOREM FOR RANDOM WALK 285 

Without loss of generality we may assume a~ so large that 2B < ½Coa~ and then 
for m > ma, am~2 < k < m 

f G~k)(dz) < 
(21.9) I~1 ~_(Coa1-2B)~/m 

< 

f Gtlk)(dz ) 
[Z[ ~_Co¢lJk/2 

f 8 2 e-U2/Zdu < 6.24 

(for the last two steps we used the central limit theorem and (2.15)). We now 
combine (2.12), (2.13), (2.17)-(2.19) to obtain for n=2m or 2 r e + l ,  Ixl 
<= B~/2m + 1, m >= max(mo, ml,m2,m3) 

I F(~)(x + ~) - ~(.)(x) I 

< 2e-b" + ~ ( k ) a ' ( 1 - -  a ) ' - '  [ 3  f H.(dy)Gtlk)(-y+ I) 
ara/2 ~k <m 

(2.20) ] 
mll=M(m) 

<= 2e -bin + F(")(I) + ~- 1 -  nl/~M(n) 

In view of (2.1) this implies (2.3) for n large enough (recall F(")(I)= P{S~I}) 
and the proof of Lcmma 1 is therefore complete. 

Practically the only reason for proving Lcmma i is that it allows us to replace F 
by F* • where • is the standard normal distribution with density 1/x/2-n~ e - : /2  . 
Indeed, let II1, Y2,"" be independent normal variables, each with distribution 
and assume that the {Y~}i__ i are independent of the {Xi}l_. 1- Then, by Lemma 1, 
there exists an N~(8,B) such that for n >= N~(g,B) 

P{S. + ] 
t = l  

g f t~tn)(dy)[P{Sn + yEl} -- P{Sn~I}[ 

(2.21)__< "j f ~c.)(dy)eP{S,~X} + f ~t,)(dy)24(l_1) 1 
I~'1 _~n4n lYl >a4n nll"M(n) 

nl/'M(n) ~ / ~  I,l_>s 

Since B can be taken arbitrarily large and 8 arbitraily small we see from (2.1) 
and (2.21) that 
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i = 1 n l/~M(n) 

as well. In other words the random variables X~ + Y~ satisfy the hypothesis of 
the theorem. In addition 

f lira P ~ l= 1 < = F~(x) 
.-, oo [ hilUM(n) J 

is equivalent to (1.4) because 

ZY, 
i = 1  

nl/~M(n) 
0 in probability 

(this is even true for ~ = 2, for then a 2 = oo implies that M(n) must tend to oo if 
(1.3) is to hold).(7) We therefore see that it suffices to prove the theorem for X~+ Y~ 
instead of  Xl. Rather than carry the Y~ along we change notation and write just Xl 
for Xt + Y~ and F again for the distribution function of  the new F. In the sequel 
we therefore have 

x / ~  -X2ndx = ~-,2n . 

By the standard inversion formula, [5] Theorem 12.1, (2.1) now gives for any 8 > 0 

t 

e s . e  - ~ , +  =~-~ _ ---7--- 
t 

= 21t _ - - -- i - - - -  O"(t)dt + ~ ;  

Since this holds for each 8 and O(t) => 0 for I t I sufficiently small, we can translate 
the basic hypothesis of  our theorem into 

( ÷) 1 _n_t__t~ 1 +~ 1 1 
(2.23) 2 ~  _ ~ ,,,, 1 - I II  n t/~M(n) 

(n --} co, e > 0). 

Next we show (and this is the crux of  the proof) that 

(7) See for instance Theorem 4.1 in C. G. Esseen, On the concentration-function of a sum 
of independent random variables, Z. Wahrschvinlichkeitstheorie verw. Gebiete 9 (1968) 290-308. 
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An ,(1 I 

is of the right order to normalize Sn. For this purpose we define 

d n ( q ) = i n f { L : P { S n ~ [ - L ,  +L]I___q}, 0____q<l. 

It follows directly from Theorem 3 in [6] and Lemma 1 above that for any 0 < ql 
-<- q2 < 1 there exists a C~(q~,q2) such that 

(2.24) limn_.oosup ~ _ Ct(ql ,q2 ) < oo. 

(We should point out that dn(q) is not exactly the same as the dispersion function 
D(S~; q) used in [6]. But clearly D(Sn; q )<  2dn(q) whereas for q > ½, dn(q) 
_~ D(Sn; q) since any interval containing Sn with probability q > ½ must contain 
the origin for symmetrically distributed Sn.) Now it is clear from (2.2) that for 
large n 

(2.25) dn(q) ~_ -~4 An, 

so that only an upper bound for dn is needed. 

LEMMA 2. For each q < 1 there exists a C2(q) such that 

(2.26) 

Proof. 

dn(q) ~_ C2(q)An. 

for Itl 

Since 

I+;  1 cosxt  : [ ~ _ . . 1 - O " ( t  ) 
P { S  a~dx} . -  O(t) i : ~ k - ~  dt = _ v / ( t ) - l S _ - ~  dt 

= ok(t) dt ,~ n 1 - 1/,{M(n)}- 1 

k = l  8 

we have for sufficiently large n (from the positivity of the integrand) 

{f_+*.l-costSn. lO,  I'1 } 14-" P O(t). at >-T-TVnl-1/~(M(n)) -1 < 

In particular (because P{dn(¼) < Sn < dn(¼)} > ½ and O(t) > ½ 
< n{dn(¼)} -1 eventually), for n ~_ nl we can find an 

for which 
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~2 1 = - ~ a t  ~ _ q,(t) 1 - O(t) 

(2.28) 
10n n t -  ll+,{M(n)} - 1 

To compare n with x, we now define the function K ( . )  by 

y'g(y)  = inf{k: P/ 'M(k) __> y} y _~ 0. 

From Karamata's well known representation for slowly varying functions, [4], 
Corollary to Theorem VIII.9.1, one easily sees that for suitable n2 -- n2(8) 

inf m ' / ' M ( m )  _~ (1 + -~-~]a/L (2.29) 
,,,~_o +e).g,,2 nl/~M(n) \ Z l  

From this property it follows immediately that K is also a slowly varying function 
and that 

K(nl/~M(n)) ,,., M-*'(n) (n ~ oo) (2.30) 

as well as 

(2.31) M(y+'K(y)) ,,, K -  l/+(y) 

We now observe that by (2.27) and (2.25) 

(y ~ oo). 

By the definition of K and (2.29) this implies for n ~ na 

(÷1) (2.32) n < - ~ x .  1 -  K x. 1 -  . 

In view of the slowly varying character of M and K and the analogue of (2.29) 
obtained by replacing 1/~ by 1 - 1[~ and M by M -1, (2.32) implies 

n t - 1/ ,{M(n)}- t <= Csx~-1K(x,,)t  - l l . ,{M(xlK(x,))}-  1 

,.., C3x~,-IK(x,,) (See (2.31)). 

This estimate of the last member of (2.28) leads to 

f dt < C~C+x:- tK(x,) ,  n > n+. (2.33) 1 - ~(t) = - 

C1 in (2.33) is taken as C1(¼,•), which we assume > 1 without loss of generality, 
whereas C3 and C+ are constants depending on ~ and [ 11 only. Next observe that 

1 1 nl/'M(n)" 
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(2.34) d . + t ( l )  ~ d . ( 3 )  for n>=ns, 

because for each Cs 

in particular if Cs is fixed so large that PflX,+ 11 -< c,} ___ ½, then it follows from 

lira. inf P {ISnl <: d, ( 3 ) _  Cs} 

. - ,~o - = 4 

and (2.35) that eventually 

P S.+II ~ d ,  > T '  

whence (2.34). (2.27) together with (2.34) and (2.24) shows 

x.+t ~ d 1 - x., 

so that each interval of the form [ l / n C ~  , l l r t C ~ - 2 ] ,  k >- k t contains at least 
one x~ x. This finally allows us to convert (2.33) into 

f 
Cl-k- t l l t l~Cl-k  

d t  p e t -  l'~k(tt-1)l~[C'~k~ k ~" kl ,  
1 - ~ ( t )  -~ "-q' - '6"~1 - " t ' - - 1 / ,  = 

an estimate which is free of xn. It follows immediately that for k > k2 

f I q : ( t )  l dt ~ f e - - , , ( 1 - ~ ( o )  1 - ~ ( t )  . 1 - ~wt,j at  

Ct - k ' ~  ~_ltl ~_Cl "k  Ct-k- ~_~Itl ~C~ -k 

< 1 f at 
- -  max x e  - x  
n ~ o  1 - ¢ ( t )  

Ct-k'l~ltl~_Cl-~ 

- -  ~ -~-c~c'-" K(cb. 

k2 ~_ kt only has to be chosen such that $(t) > 0 for I t l < C[~2" If we write Cs 
for C~ "t* we arrive at 
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(2.36) 

f I C"(t)[ dt  < C7 E C~('-I)K(C~) 
11 Ctk_~A./C 

c/a._~lfl ~cs 

< C I  [An~ =-1 Clo 1 
' '- K(An) < n > n6 

= n \ C ]  = A n  C ~ - 1 '  = 

(see the definition of An and (2.30)); C~o is independent of C. 
The proof of the lemma is now completed by an application of the inversion 

formula, [5] Theorem 12.1, which gives 

7g 1 

= - 2  ~ = ~ _ t On(t)dt 

(2.37) 

>= 2n2 A nC : ~"(t)dt 
Ifl <_c/a. 

nC ~"(t) dt An 
"~- _ C 

f 2 An e-n'212dt > C 
C 

I*l>Cs 

1A. f 2 c 1¢(0[ dt 
Id>ClA. 

S I¢(ota, 
c/,4.<lfl __.cs 

2Clo (See (2.23) and (2.36)). 
Ca 

Since a > 1 we can choose C = Cll  > 0 such that the last member of  (2.37) 
exceeds C ~  so that d(C[11) < ~A~J2Clr This proves (2.26) for q = C~'11 and 
for general q it then follows from (2.24) and the monotonicity of  dn(. ). 

To prove the theorem is easy enough now. By (2.25) and (2.26) every increasing 
sequence of integers contains a subsequencc along which the distribution of 
D S./An converges weakly to a nondegenerate distribution (D a positive constant). 
Consider then any sequence n~-~ oo such that the weak limit 

exists. Then also 

[D S., } 
lim~_.~P [-~,, < x = G(x) 

lira ~b"' (D~-~,t)=T(t) = f eUXdG(x) 
l~oO 

and it suffices to prove T(t) = exp - [ t [ ~ when D is properly chosen(S). To begin 

(a) If e is taken such that tp(t) > 0 for [ t[ ~_ e, then one easily deduces from (2.23) and 
Karamata's Tauberian theorem that 

[ {t: It] _-< e and ~k(t) ~ y}[ ~ 2C(1 - y) t l 'M-1(1/1 - y) as y 1'1 C -- r(llcd[II / 
(compare also (2.43) and (2.44) below). One would like to conclude from this that 

ta 
I- J/(t),,, C~K(I/t) as t~,0. 

which is equivalent to the main result (1.4). The author did not succeed in constructing a rigorous 
proof along these simple lines. 
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with we have the following simple estimate because X~ has a symmetric distribu- 
tion ([4], Lemma V.5.2): 

(2.38) 

p [ m a x [ X , [ > 2 C 2  ( 3 ) A . } < P { [ S . [ > 2 C 2 ( 3 ) A . }  

In turn, (2.38) implies 

or, using the definition of A, and K(y), 

(2.39) p { [ x  11> y} < Cl3 = = y~K(y) ' Y >= y~" 

For 0~ = 2 this estimate will not be sharp enough, but for ct < 2 we obtain 

f+3' fo ° 1 - ~(t) = - e"~)dF(x) = - (I - cos tx)dP{[ X1 [ >- x} 

(2.40) 

fo "l-' l'l" <= 2P{lX'l>-]tl -'} + t2xP(lX'] >~x}dxsc ' '  / - f  x" 

As a first estimate for ~ we therefore have 

(2.41) 

1 - ~ ( O < l - l i m i n f ~ " / D t ~ < l -  l i m i n f [  1 =  .-.oo \ A J  = .~oo A ~ K ( ~ )  ] 

( °" I.)" < 1 - 1 i m i n f  1 - C l s n [ t  ~ l - e x p { - D ~ C t s ] t [ ~ } .  
n--~ OD 

By means of standard estimates (e.g. [5], §13) for the tail of G in terms of the 
behavior of its characteristic function ~ near the origin it is seen from (2.41) 
that 

1 - 6(x) + G ( -  x) = 0(x- ' )  (x --} oo) 

and since a > 1 this implies that J'[ x ] dG(x) is finite and that V(. ) is continuously 
differentiable. We also see from (2.41) that ?( t)> 0 for all t. 

Much more precise information about V is obtained by computing for any 
integer k > 1 
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f_+::(t)at = lim l i m d f l " ' ( D t ] d t  ~ _ ,.® ~-~,/ 

= lira lim A.~ f ~bk.,(s)ds 
T~ooi~oo D 

Isl ~-DTA~ 1 

= lira + lira lira O 

(see (2.36) and (2.22))ffi 27~/Dk ~/= (see (2.23)). 
We now choose D = aT~/F(1/~), which is indeed equivalent to taking 

C = ~ ( ~ -  1) 

in(1.4).  For  this choice of  D 

+oo 2 F ( 1 )  +oo 

f_oo T'(t)dt = aktt= = f = (2.42) 

Introduce 

Israel J. Math., 

1 
T--d-S-_l + A,, fc~e-t""'12ds) 

v(y) = [(t: rCt) = y} J, o_~ y = 1. 

Because 0 < ~(t) =< 1 the left hand side of (2.42) can then be rewritten as 

/ o+oo fo 1 (2.43) , ~k(t)dt = -- xtdv(x), k = 1,2, .... 
d 

Since the finite measure - x de(x) is uniquely determined by its moments (see 
[4], Chapter VII.3 or use Theorem 2.9.3 in [3] after an integration by parts), 
(2.42) and (2.43) imply 

/ 1 \1/=. 
(2.44) v(y)  = J{ t :  e - I '1" ~_ y } [  = 211og7)  . 

To complete the proof (for ~ < 2) we show that ~(t) is strictly decreasing on 
t ~ 0. Indeed, if there exist 0 < tl < 12 with ~(tl) < 7(12) then mino~f___t2T(t) is 
taken on at a point t3e(0,t2) (because also 7(0)= 1 > mino__.t___t27(t) for any 
t2 > 0 since G is non degenerate by (2.25); see 15], Theorem 14.2). At t 3 we must 
have ~'(13) = 0 and 0 < z = 7(t3) < 1 (recall that 7(t) > 0 for all t). But this is 
impossible for then 

l imsup 1 i { t : z _ 8 < ~ ( 0 _ ~ z + 8 } l = ~  o 
e,LO ~ -  ~- 

whereas this limit should have the finite value 



Vol. 6, 1968 A TAUBERIAN THEOREM FOR RANDOM WALK 293 

4 / 1 \ t /~-I  
lira 1 [v ( z -  e ) -  v(z + ,)] = -~-  [log~--) . 
~ 0  

Thus ~(0 is strictly decreasing on t ~ 0 and because ~ is symmetric v(y) = 2t(y) 
where fly) is the unique t > 0 with ~(t)= y. This means t(y)= (log 1/y) 11~, 
~((log 1/y)l/~) = y or ~(t) = exp - I t l ~ as desired. 

For ~ < 2 the proof is complete, but for ~ = 2 an extra argument is needed 
because the last estimate in (2.40) could conceivably fail. We show that (2.40) is 
correct even for ~ - 2. After (2.40) the proof did not rely on ~ < 2 and can therefore 
be used also if ~ = 2. To obtain (2.40) for ~ = 2 we put 

a2(T) = dF(x). 

Clearly a2( • ) is nondecreasing and 

f 2 :  1 - ~k(t) = (1 - cos xt) dF(x) >>- n2 

Ixl  _.n# 

Therefore 

tZx2dF(x) = ~ a2 . 

(2.45) : ~"(t)dt < f exp{-n(1 -~b( t ) )}d t  

It[ ~_Cla. Itl <__c/a. 

f : e  { 2nt 2 2[nA, \ i  . = n 3/2 1 

Together with (2.23), (2.36) and (2.22), (2.45) implies 

~s/2 1 + C___1o l 7c 
- - > ~  n>.n7. 
C =-* = A.' 

Thus for C = C16 say, Cj6 sufficiently large, 

(nAn~ < Ct7 An = CraM(n) 

or, in view of the definition of  A, and (2.31) 

O(y) ~ C19 K -  l12(y). 

(0~ = 2), 

Thus, by virtue of (2.39), 
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1-~b(t)= (1-costx)dF(x)<2P Ix, l_>_ 

< 2Ct3  tz 1 2 C~9 

which is the desired replacement for  (2.40). 

1° 
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